OXIDATIVE ADDITION AND ISOMERIZATION REACTIONS: THE STEREOSELECTIVE SYNTHESIS OF CIS- AND TRANS-Ph,TeX4

MEEHAE JANG and ALEXANDER F. JANZEN

Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada)

SUMMARY

A study of the stereoselective synthesis of cis- and trans-Ph₂TeX₄ (X=F,Cl) supports a two pathway mechanism in which oxidative addition leads to the cis isomer while subsequent isomerization leads to the trans isomer.

INTRODUCTION

Oxidative addition reactions may produce cis or trans isomers of organotellurium(VI) fluorides [1-5], as illustrated by the formation of either *trans*-Ph₂TeF₄ [1] or *cis*-(C₆F₅)₂TeF₄ [2] if XeF₂ or F₂, respectively, is used as the oxidizing agent. We wish to present evidence in support of a two pathway mechanism in which oxidative addition, eq 1, leads to *cis*-Ph₂TeF₄ while a subsequent isomerization, eq 2, leads to *trans*-Ph₂TeF₄.

We postulate that oxidative-fluorination occurs by the stepwise addition of 'F' and 'F⁺' [6], where F donors include R_dNF , HF, or FHF, and F⁺ donors include XeF⁺ or

© Elsevier Sequoia/Printed in The Netherlands

0022-1139/91/\$3.50

FXeFXeF⁺, and that a lone pair of electrons in anion $Ph_2TeF_3^-$ is trans to phenyl, thus ensuring that two phenyl substituents occupy cis positions during oxidation, eq 1. Te(IV) compounds readily form five-coordinate anions [7] and the structures of MeTeI₄⁻ [8] and PhTeX₄⁻ [9] confirm that alkyl or phenyl substituents may occupy sites trans to a lone pair.

The isomerization of *cis*- to *trans*-Ph₂TeF₄, eq 2, is assumed to follow a pathway found for other organotellurium(VI) fluorides in which five-coordinate cations are produced by Lewis acids such as PF₅ [10,11], SbF₅ [4], BF₃ or SiF₄, with the latter two species often originating from glass apparatus [10,11].

RESULTS AND DISCUSSION

Eq 1 implies that no reaction can occur unless a source of fluoride ion is present and we have confirmed this by keeping a mixture of Ph_2TeF_2 and XeF_2 in acetonitrile in a Teflon bottle for 48 hr and, occasionally, up to 8 days without reaction. However, addition of Bu_4NF or Et_4NCl results in rapid oxidation within 10 min. Similarly, a mixture of Ph_2TeCl_2 and XeF_2 does not undergo oxidation within 48 hr unless Bu_4NF or Et_4NCl is added, after which oxidation occurs within 10-30 min. Reactions are accompanied by the evolution of xenon gas and a visible colour change from colourless to yellow and back to colourless. Typical conditions for reactions of Ph_2TeX_2 , R_4NX and XeF_2 are given in Table 1. We have found that Ph_2TeF_2 , Ph_2TeCl_2 or Ph_2TeFCl may be used as Te(IV) starting material, and either R_4NF or R_4NCl may be used as a source of 'X⁻', presumably because halide exchange occurs rapidly in $Ph_2TeX_3^-$, as it does in other Te(IV) anions such as $PhTeCl_4^-$ or $PhTeBr_4^-$ [7,12].

Although XeF₂ and Ph₂TeX₂ do not react in carefully dried solvents in Teflon equipment, unless R_4NX is added, this reaction proceeds slowly without R_4NX if carried out in glass apparatus, presumably because glass and solvent eventually produce HF, BF₃ and SiF₄. The formation of BF₃ and SiF₄ from glass implies that H₂O must also be released, and we have identified by ¹⁹F NMR small amounts of the known hydrolysis product Ph₂TeF₃OH [13] in solution. At the completion of reactions, HF could be detected by ¹⁹F NMR; if reactions were carried out in glassware, small amounts of BF₄⁻⁻ were observed.

NMR data for diphenyltellurium(VI) halides are given in Table 2. The symmetry of cis-Ph₂TeF₂Cl₂ 2 is established by its AB ¹⁹F NMR spectrum. When reaction conditions were optimized for the formation of 2, as monitored by ¹⁹F NMR, it was found that 2 was produced in 82% yield within 30 min, consistent with oxidation according to eq 1, as well as halide exchange via Ph₂TeK₃⁻.

In another set of experiments, reaction conditions were optimized for the formation of cis-Ph₂TeF₃Cl <u>3a</u>, which was prepared in 84% yield within 30 min, from Ph₂TeCl₂, XeF₂ and Bu₄NF. AB₂ NMR spectra are expected for all three possible isomers of Ph₂TeF₃Cl, but two of these isomers have F^a trans to Cl, which leads to low field ¹⁹F chemical shifts, but only stereoisomer cis-Ph₂TeF₃Cl <u>3a</u> (Table 2) has F^a in a region expected for F^a trans to Ph [5]. The formation of cis-Ph₂TeF₃Cl <u>3a</u> is consistent with oxidation according to eq 1, as well as halide exchange via Ph₂TeX₃⁻.

Molar ratio of reactants	Reaction conditions	cis-Ph ₂ TeX ₄	trans-Ph ₂ TeX ₄	
Ph ₂ Te:XeF ₂ :Et ₄ NCl; 1:2:0.1	10 min, CD ₃ CN, NMR tube	<u>1a</u> 14%	<u>1b</u> 40%	
$Ph_2TeCl_2:XeF_2$; 1:2 (no R_4NX)	3 hr, CDCl ₃ , glass tube	<u>1a</u> 0%	<u>1b</u> 49%	
Ph2TeCl2:XeF2:Et4NCl; 1:2:0.1	30 min, CD ₃ CN, Teflon bott	le <u>1a</u> 1-2%	<u>1b</u> 95%	
Ph ₂ TeCl ₂ :XeF ₂ :Et ₄ NCl; 1:2:2	30 min, CH ₂ Cl ₂ , Teflon bott	e <u>2</u> 82%	<u>3b</u> 18%	
Ph ₂ TeCl ₂ :XeF ₂ :Bu ₄ NF; 1:2:1	30 min, CD_3CN , Teflon bottl	e <u>3a</u> 84%	<u>1b</u> 16%	

 TABLE 1

 Reaction conditions and % yield of cis- and trans-Ph2TeX4 (X=F,Cl)

The cis isomers described in Table 1 slowly undergo cis-to-trans isomerization in solution, as well as chloride-to-fluoride substitution, presumably via the cation $Ph_2TeX_3^+$. If sufficient fluoride is present in solution, all reactions after several days lead only to *trans*-Ph_2TeF_4. In the case of *cis*-Ph_2TeF_3Cl <u>3a</u> it was possible to monitor isomerization to *trans*-Ph_2TeF_3Cl <u>3b</u>, and eventual conversion to *trans*-Ph_2TeF_4. *Trans*-Ph_2TeF_3Cl <u>3b</u> gives an AB₂ spectrum (Table 2) with F^a at low field (+37 ppm), as expected for F^a trans to Cl, while F^b is in the region expected for F^b trans to F^b [5].

Previously, the synthesis of trans-Ph₂TeF₄ [1] was accompanied by small amounts (1-4%) of cis-Ph₂TeF₄ [5], and we have now modestly increased the yield of cis-Ph₂TeF₄ to 14% within 10 min by adding Et₄NCl (Table 1). After 10 min, cis-Ph₂TeF₄ is slowly converted to trans-Ph₂TeF₄, eq 2, presumably because Lewis acids such as BF₃ or SiF₄ are produced in glass. That the trans isomer is favoured in the presence of Lewis acids was confirmed by reacting trans-Ph₂TeF₄ with PF₅, which led to rapid fluorine exchange and very broad fluorine NMR peaks; on addition of R₄NF, trans-Ph₂TeF₄ was recovered, thereby confirming that fluorine exchange rather than decomposition was responsible for the very broad fluorine NMR lines.

Klein and Naumann reported that $cis-(C_6F_5)_2\text{TeF}_4$ reacts with common organic solvents [2]. Our work leads us to suggest that $cis-(C_6F_5)_2\text{TeF}_4$ may be undergoing rapid fluorine exchange and isomerization in solution in glass apparatus, rather than decomposition. Such exchange has been stopped in related systems by the addition of F⁻ or Cl⁻ because small

Compound and spi	n system	δF ^a	δF ^b	J(F ^a F ^b)	J(TeF ^a)	J(TeF ^b)	Solvent
cis-Ph ₂ TeF ₄ 1a	A ₂ B ₂	$-32.7(t)^3$	$-75.9(t)^4$	87.3	2884	2675	CD ₃ CN ²
trans-Ph2TeF4 1b	A ₄		-56.7(s) ⁴			2997	CD ₃ CN
$cis-Ph_2TeF_2Cl_2$ 2	AB	$+63(d)^{5}$	$-43(d)^3$	97.7	2500	2220	$CD_{3}CN$
cis-Ph2TeF3Cl 3a	AB ₂	$-19.9(t)^3$	$-48.9(d)^4$	88.9	2830	2418	CD ₃ CN
trans-Ph2TeF3Cl 3	$\underline{\mathbf{p}} \mathbf{AB}_2$	+37(t) ⁵	-50.2(d) ⁴	88.8	2830	2375	CD_2Cl_2

NMR data of some diphenyltellurium(VI) halides¹

¹Chemical shifts in ppm and coupling constants in Hz, s=singlet, d=doublet, t=triplet; ²see ref. [5] for NMR data in CDCl₃ solution; ³F trans to Ph; ⁴F trans to F, ⁵F trans to Cl.

amounts of Te(VI) cations which are responsible for rapid fluorine exchange are thereby removed [10,11]. These authors also reported the formation of a compound with a coupling constant J(Te-F)=3,540 Hz, which we suggest may be assigned to $trans-(C_6F_5)_2TeF_4$; if so, then the isomerization of cis and trans isomers of Ph₂TeF₄ and $(C_6F_5)_2TeF_4$ is similar and consistent with eq 2.

That $trans-Ph_2TeF_4$ was the predominant isomer of our previous synthesis may now be interpreted as follows: since no catalyst was added and since contact with glass was not rigorously excluded, therefore, oxidation was very slow and cis-trans isomerization prevailed.

Martin and co-workers reported that oxidation with BrF_3 gives trans-F₂Te(C₆H₄CMe₂O)₂ [4]. If the mechanism of eq 1 and 2 is applied to this reaction and BrF_3 is a source of 'F' and 'F⁺', perhaps from ions BrF_4^- and BrF_2^+ , then intermediate 4 may have F trans to a lone pair of electrons. Perhaps two bidentate ligands in 4 favour a planar arrangement with F in an apical site, as found for related 5-coordinate P and Si catecholyl derivatives, e.g. FP(OC₆H₄O)₂ [14] and FSi(OC₆H₄O)₂⁻ [15]; in that case addition of 'F⁺' to 4 is predicted to give trans-F₂Te(C₆H₄CMe₂O)₂, as found experimentally. In the presence of SbF₅, trans-F₂Te(C₆H₄CMe₂O)₂ isomerizes to cis-F₂Te(C₆H₄CMe₂O)₂ [4].

In summary, the mechanisms of eq 1 and 2 suggest that the stereochemistry of oxidative addition is determined by the structure of 5-coordinate, 12-electron anions, while the stereochemistry of isomerization is determined by the structure of 5-coordinate, 10-electron cations; both anion and cation may be involved in halide exchange and substitution reactions; various oxidizing agents may serve as sources of 'X⁻' and 'X⁺'; and glassware may serve as a convenient source of Lewis acids.

EXPERIMENTAL

NMR spectra were recorded on a Bruker AM300 spectrometer at 282.4 (¹⁹F) and 94.76(¹²⁵Te) MHz with the use of internal C_6F_6 (-162.9 ppm w.r.t. CFCl₃) and external Ph_2Te

TABLE 2

(692.3 ppm w.r.t. Me_2Te) as reference. All reactions were routinely monitored by NMR and structural assignments are based on NMR spectra of related phenyltellurium(VI) fluorides [1,5,10,11,13]. Yields are based on ¹⁹F NMR integrations.

XeF₂ (PCR/SCM), Ph₂TeCl₂ (K & K), deuterated solvents (Aldrich), and Bu₄NF in THF (Aldrich) were commercial samples and used without further purification. Solutions of Bu₄NF showed traces of BF₄⁻ and SiF₆⁼. Et₄NCl (Eastman) was recrystallized from dry CH₃CN and stored in a desiccator over P₂O₅. Ph₂TeF₂ and Ph₂TeFCl were prepared from Ph₂TeCl₂ and COF₂ [10]. All solvents were dried by standard methods and stored over 5 Å molecular sieve, and Teflon equipment was dried at 100°C for several days. XeF₂ reactions were monitored by observing the release of xenon gas bubbles and a change in colour from colourless to yellow and back to colourless, which occurred within the first few minutes if catalysts Bu₄NF or Et₄NCl were used and if the reaction was carried out in Teflon equipment. If the reaction was carried out in glass tubes then a persistent darker yellow colour was observed. Reactions were also carried out in NMR tubes, with and without Teflon liners, and monitored by ¹⁹F NMR.

Convenient synthesis of trans-Ph2TeF4 1b

The original synthesis of <u>1b</u>, by reaction of Ph_2Te with 2 equiv of XeF_2 or Ph_2TeF_2 and 1 equiv of XeF_2 , was repeated. As found previously, oxidation of Ph_2Te to Ph_2TeF_2 occurred within several minutes, but further oxidation to <u>1b</u> without R_4NX catalyst occurred only after several hours or days.

Commercially available Ph_2TeCl_2 could be used in a more convenient and rapid synthesis of <u>1b</u>. Solid XeF₂ (13.5 mg, 0.08 mmol) was added to a stirred solution of Ph₂TeCl₂ (14.0 mg, 0.04 mmol in dry CH₂Cl₂ in a Teflon bottle. Et₄NC1 (0.6 mg, 0.04 mmol) was added to this mixture with stirring. The colourless solution rapidly turned yellow with vigorous gas evolution. When gas evolution ceased, the solution turned colourless within 10 min. The ¹⁹F NMR spectrum of the solution confirmed the formation of <u>1b</u> in 95% yield. A small amount of HF was also detected. Evaporation of the solvent gave a white solid which was washed with cold acetonitrile. Slow evaporation of dichloromethane solvent gave colourless crystals of *trans*-Ph₂TeF₄ <u>1b</u>, identified by ¹⁹F (Table 1), ¹²⁵Te and ¹³C NMR, and which were stored in Teflon vials.

Preparation of cis-Ph2TeF2Cl2 2 and trans-Ph2TeF3Cl 3b

Solid XeF₂ (49.1 mg, 0.29 mmol) was added to a solution of Et_4NCl (48.0 mg, 0.29 mmol) in CH₂Cl₂ in a Teflon bottle, but there was no reaction, as judged by ¹⁹F NMR, except for the formation of small amounts of HF. Solid Ph₂TeCl₂ (49.4 mg, 0.14 mmol) was added to this mixture and ¹⁹F NMR examination (Table 2) after 30 min showed the formation of 2 (82%) and <u>3b</u> (18%). After a further 45 min, the reaction mixture contained 80% *trans*-Ph₂TeF₄ <u>1b</u> and small amount of <u>3b</u>. The latter was also converted to *trans*-Ph₂TeF₄ <u>1b</u> after 2 days.

Preparation of cis-Ph2TeF2Cl 3a

Solid XeF₂ (20 mg, 0.12 mmol) was added to Ph₂TeCl₂ (21 mg, 0.06 mmol) in CH₃CN (2.5 mL) in a Teflon bottle. Ph₂TeCl₂ is insoluble in CH₃CN. No reaction occurred after stirring for several min. Adding Bu₄NF (-0.12 mmol) caused rapid xenon gas evolution and the solution turned yellow. The reaction mixture was stirred for 30 min and the solution became very faintly yellow (almost colourless) and ¹⁹F NMR (Table 2) showed the formation of *cis*-Ph₂TeF₃Cl <u>3a</u> (84%) and *trans*-Ph₂TeF₄ <u>1b</u> (16%). After stirring for 12 hr, the solution contained predominantly *trans*-Ph₂TeF₄ <u>1b</u>.

Products <u>1a</u>, <u>2</u>, <u>3a</u>, <u>3b</u> were not isolated because of the conversion to trans-Ph₂TeF₄ <u>1b</u>, and the latter was recovered from all reactions and washed and re-crystallized as described above.

ACKNOWLEDGEMENT

The financial assistance of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 K. Alam and A. F. Janzen, J. Fluorine Chem., 27 (1985) 467.
- 2 G. Klein and D. Naumann, J. Fluorine Chem., 30 (1985) 259.
- 3 C.D. Desjardins, C. Lau, J. Passmore et al. Inorg. Nucl. Chem. Lett., 10 (1974) 151.
- 4 R.S. Michalak, S.R. Wilson and J.C. Martin, J. Am. Chem. Soc., 106 (1984) 7529.
- 5 A. F. Janzen, K. Alam and B. J. Blackburn, J. Fluorine Chem., 42 (1989) 173.
- 6 W. Cartwright and A. A. Woolf, J. Fluorine Chem., 19 (1981) 101.
- 7 J. Bergman, L. Engman and J. Sidén, in S. Patai and Z. Rappoport, (eds.) 'The Chemistry of Organic Selenium and Tellurium Compounds', Vol. 1, Wiley, New York (1986) p. 517.
- 8 F. Einstein, J. Trotter and C. Williston, J. Chem. Soc. (A), (1967) 2018.
- 9 N. Petragnani, J. V. Comasseto, and Y. Kawano, J. Inorg. Nucl. Chem., 38 (1976) 608.
- 10 A. F. Janzen and M. Jang, Can. J. Chem., 67 (1989) 71.
- 11 A. S. Secco, K. Alam, B. J. Blackburn and A. F. Janzen, Inorg. Chem., 25 (1986) 2125.
- 12 F. J. Berry, B. C. Smith and C. Jones, J. Organometall. Chem., 110 (1976) 201.
- 13 A. F. Janzen, K. Alam, M. Jang, B. J. Blackburn and A. S. Secco, <u>Can. J. Chem.</u>, <u>66</u> (1988) 1308.
- 14 H. Wunderlich, D. Mootz, R. Schmutzler and M. Wieber, Z. Naturforsch., 29B (1974) 32.
- 15 J. J. Harland, R. O. Day, J. F. Vollano, A. C. Sau and R. R. Holmes <u>J. Am. Chem. Soc.</u>, <u>103</u> (1982) 5269.